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1
EFFICIENTLY REPRESENTING COMPLEX
SCORE MODELS

TECHNICAL FIELD

The subject matter described herein relates to finding an
efficient representation to evaluate complex score models.

BACKGROUND

A score model is a set of characteristics which can
comprise three column tables of bins, bin ranges and score
values. Each characteristic is associated with a specific
variable used in bin ranges. Bin is a symbolic name. Range
is a bounded single dimensional interval of values. Scores
are numbers that are associated with a particular bin.
Depending on the decision process being modeled a score
model can be extremely complex having many characteris-
tics and many bins per an individual characteristic.

Interpretation of a score model implies application of the
condition of each range against the value of the decision
variable. The simplest interpreter does such comparisons
one by one, repeating evaluation for all ranges in a charac-
teristic. A straightforward evaluator would exhaustively
evaluate all bins in each characteristic, so it will take C*B
evaluations in worst case scenario, where C is the number of
characteristics in a score model, B is the average number of
bins in a characteristic.

SUMMARY

In one aspect, data is received that characterizes a score
model. Thereafter, the score model is normalized by trans-
forming it into a directed acyclic graph. The directed acyclic
graph is then transformed into a structured rules language
program. The structured rules language program is then
transformed into a program using a concurrent, class-based,
object-oriented computer programming language (e.g.,
JAVA, C, COBOL, etc.).

At least a portion of the concurrent, class-based, object-
oriented computer programming language can be displayed
in a graphical user interface. The concurrent, class-based,
object-oriented computer programming language can be the
JAVA, C, and/or COBOL programming language.

Normalizing can include mapping the score model to a
root node of the directed acyclic graph, mapping character-
istics of the score model to intermediate nodes of the
directed acyclic graph, and mapping each score value to a
leaf node of the directed acyclic graph. In addition, bins of
a same characteristic can be sorted and checked for gaps and
overlaps between bin ranges. Data reporting overlaps
between bin ranges can be transmitted and/or displayed. The
normalizing can include merging paths of the directed
acyclic graph terminating with equivalent leaf nodes.

Transforming the directed acyclic graph into the struc-
tured rules language program can include traversing the
directed acyclic graph in a depth-first direction and applying
blocks of structured rules language code generated with data
from nodes, arcs and leaves of the directed acyclic graph.
Transforming the directed acyclic graph into the structured
rules language program further can include analyzing the
directed acyclic graph to determine a structured rules lan-
guage generation strategy, and parameterizing a structured
rules language generation synthesizer with the determined
structured rules language generation strategy. Transforming
the structure rules language program into the program using
the concurrent, class-based, object-oriented computer pro-
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2

gramming language can include translating structured rule
language rulesets into methods of the concurrent, class-
based, object-oriented computer programming language.

Non-transitory computer program products (i.e., physi-
cally embodied computer program products) are also
described that store instructions, which when executed by
one or more data processors of one or more computing
systems, causes at least one data processor to perform
operations herein. Similarly, computer systems are also
described that may include one or more data processors and
memory coupled to the one or more data processors. The
memory may temporarily or permanently store instructions
that cause at least one processor to perform one or more of
the operations described herein. In addition, methods can be
implemented by one or more data processors either within a
single computing system or distributed among two or more
computing systems. Such computing systems can be con-
nected and can exchange data and/or commands or other
instructions or the like via one or more connections, includ-
ing but not limited to a connection over a network (e.g. the
Internet, a wireless wide area network, a local area network,
a wide area network, a wired network, or the like), via a
direct connection between one or more of the multiple
computing systems, etc.

The subject matter described herein provides many
advantages. For example, the current subject matter provides
enhanced representations of score models thereby increasing
usability to modelers.

The details of one or more variations of the subject matter
described herein are set forth in the accompanying drawings
and the description below. Other features and advantages of
the subject matter described herein will be apparent from the
description and drawings, and from the claims.

DESCRIPTION OF DRAWINGS

FIG. 1 is a process flow diagram illustrating a technique
for representing a scoring model;

FIG. 2 is a diagram illustrating normalizing a scoring
model by transforming it into a directed acyclic graph; and

FIG. 3 is a diagram illustrating partitioning of a directed
acyclic graph corresponding to a scoring model.

Like reference symbols in the various drawings indicate
like elements.

DETAILED DESCRIPTION

The current subject matter is directed to enhanced orga-
nization of rules that enables rules to be efficiently evaluated
thereby eliminating redundant evaluations and making opti-
mal transformations of those rules into a code executable on
a computer platform. In a process of transformation, rules
can be translated into the structured rule language (SRL)
program and then to a JAVA, C, or COBOL program.

A directed acyclic graph (DAG) is a Directed Graph with
no cycles or loops. A Directed Graph is a set of nodes and
a set of directed edges, also known as links or arcs, con-
necting the nodes. The arcs have arrows indicating direc-
tionality of the arc.

With reference to diagram 100 of FIG. 1 (and as will be
described in further detail below), at 110, a score model can
be normalized by transforming it into a DAG. Thereafter, at
120, the DAG can be transformed into an SRL program.
Later, at 130, the SRL program can be transformed into a
concurrent, class-based, object-oriented computer program-
ming language program such as a JAVA, C, or COBOL
program.
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Normalization of a Score Model. Every score model
needs to be converted into the uniform representation which
simplifies the following SRL generation as it allows use of
a parameterized DAG—SRL translator (as described in
further detail below). The normalized form of a score model
can be represented by a DAG built from nodes and arcs in
such way that the characteristics and bins of a score model
can be reflected into nodes of the DAG and score values can
be reflected into leaf nodes of the DAG.

With reference to diagram 200, normalization of a score
model can initiated, at 210, by mapping the score model to
aroot node of a DAG. Thereafter, at 220, each characteristic
can be mapped to an intermediate node of the DAG con-
nected to the root node. Next, at 230, all bins of the same
characteristic can be sorted and checked for gaps and
overlaps between bin ranges. All gaps can be associated with
the default bin. All overlaps can be treated as errors and
reported back to the user. Array of sorted ranges can be
converted into the tree of DAG nodes, such that each upper
level node has one or two connected nodes of lower level.
Subsequently, at 240, each score value can be mapped to a
leaf node of DAG. Paths of the DAG terminating with the
equivalent leaf nodes can be merged. Two leaf nodes are
equivalent if and only if they are mapped to the same score
values.

SRL Synthesis. A parameterized SRL synthesizer (as
described in further detail) can traverse the DAG generated
from a score model. The synthesizer can also analyze the
DAG and use information from the score model in order to
select the optimal generation strategy. The SRL generation
strategy can be represented by a map of DAG entities (nodes
and arcs) to SRL code templates. The SRL synthesizer can
include a DAG traverser parameterized by a strategy. The
SRL synthesizer can take a normalized DAG and traverse it
in depth-first direction, applying relevant blocks of SRL
code generated by substitution of placeholders in SRL
templates with actual data from DAG nodes, arcs and leaves.

While the SRL generation strategy is source metaphor-
unique, there can be two main groups of strategies. A first
group of strategies can generates a single SRL function and
second group of strategies can generate SRL rulesets.

The SRL synthesizer can generate SRL according to the
following rules described in backward chaining notation:

DAG
< <strategy>DAG_ begin
<strategy>.user__defined__elements
<strategy>.root_ node__begin
DAG__root_node
<strategy>.root_ node__end
for each (succ__node in node.successors) DAG_ node(succ__node)
<strategy>DAG__end
DAG__root_node
< <strategy>.gen_ node_ begin
<strategy>.gen_ root__arc
<strategy>.gen_ node_ end
DAG_ node(node)
< DAG_ node_ pre(node)
| DAG node_ post(node)
DAG_ node_ pre(node)
< DAG__action__node
| DAG__condition_node__pre(node)
DAG__action_node (node)
< <strategy>.gen_ arc_ set_ begin
<strategy>.gen_ node__begin
<strategy>.gen_ node__header
<strategy>.gen_ node_ action
<strategy>.gen_ node_ footer
<strategy>.gen_ node__end
<strategy>.gen_ arcset__end
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-continued

DAG__condition_ node_ pre(node)
< <strategy>.gen_ arc_ set_ begin
<strategy>.gen_ node_ begin
for each (succ__node in node.successors)
DAG_ node(succ__node)
<strategy>.gen_ node__end
<strategy>.gen7arcsetiend
DAG_ node_ post(node)
< DAG__action__node(node)
| DAG__condition__node__post(node)
DAG__condition__node_ post(node)
< <strategy>.gen_ arc_ set_ begin
<strategy>.gen__arc
<strategy>.gen__arc_ set_end
for each (succ__node in node.successors)
DAG_ node(succ__node)

With the above, DAG traversing goals are in italics with
strategy parameter placeholders are in angular brackets.

There can be various approaches to traversing DAGs. A
first approach can invoke recursive node traversal after
processing all of its outgoing arcs represented by an arc set.
A second approach can invoke node traversal inside of arc
set generation.

The first DAG traversal approach can be used for strat-
egies that transform nodes to SRL functions or rulesets.
Node outgoing arcs can be converted to function call expres-
sions and a node condition can be converted to a Boolean
expression. This approach can be used for large score
models. The approach can apply the DAG_condition_node_
post rule.

The second DAG traversal approach can be used by the
strategy which generates recursively nested IF-ELSE con-
ditions inside of the same functional (i.e., SRL function,
SRL ruleset, etc.). This approach can be applicable for small
and medium score models. The approach can apply the
DAG_condition_node_pre rule.

To optimize a number of generated JAVA classes, some
generated functionals can be inlined. Two or more generated
SRL functionals can be merged into a single large JAVA
class in such way that all context variables will be shared
between all merged methods. Looking from perspective of
the source DAG, the DAG can be partitioned into the set of
connected sub DAGs; exactly one implementation JAVA
class can be generated for each sub DAG contained in a
partition. The DAG can be partitioned in direction of depth
first traversal, so DAG nodes from the same path (lower
levels take the priority) will have higher probability to be in
the same partition which optimizes class loading expenses.

FIG. 3 is a diagram 300 illustrating a DAG partitioned to
five disjoint partitions (it will be appreciated the number of
nodes in a partition of a DAG can vary based on space and
time constraints). With this example, a first node in a
partition (solid black) is not inlined, which in addition to a
test condition, can require generation of DAG context vari-
ables initialization statements, local pattern declaration
statements and user defined SRL rules. All subsequent (solid
white) nodes and actions can be inlined so only the test
condition and (or) action are generated.

JAVA Generation. The JAVA generator can translate SRL
rulesets to methods of JAVA classes in such way that every
rule is translated into a method of JAVA class or into a
statement of JAVA method. SRL, synthesized by the SRL
generator, can be built from a list of SRL rulesets or SRL
functions. Each ruleset can be translated to one or more
classes of a target JAVA program. The number of generated
classes might become a limiting factor both in size of
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generated program and in speed of execution. Size con-
straints come from the fact that extra content needs to be
generated for every class. Execution time can be affected by
the time needed for instantiation a JAVA object in memory,
passing method arguments and generating context for a
method, if the deployment platform is JAVA. Execution time
can also be affected by the processor’s cache defragmenta-
tion: the size of a partition can be chosen comparable to the
processor’s cache memory size which will reduce cache
misses during the DAG traversal.

Complexity Analysis. Score model evaluation algorithms
can generate rules which evaluate all bins of each charac-
teristic sequentially. Such algorithms can be represented by
a flat ruleset which contains all characteristics, with one rule
per bin. Such algorithms can also contain a default rule
which assigns the default values for all characteristics before
the evaluation. So the estimated average case time complex-
ity in big O notation is:

O=(2*Ne* A+ Ne*Nb=Nc(2* 4-+Nb)),

where

A is the cost of a characteristic assignment;

Nc is the number of characteristics and

Nb is the average number of bins per characteristic.

Here a number of actions is multiplied by two because of
an initial rule which causes double assignment of each
characteristic in a model.

Time complexity of a DAG evaluation algorithm can be

as follows:

O=Nc(4+log Nb))

It should be noted that this complexity calculation does
not include the actual implementation costs like the
ruleset initialization or function calls.

One or more aspects or features of the subject matter
described herein may be realized in digital electronic cir-
cuitry, integrated circuitry, specially designed ASICs (appli-
cation specific integrated circuits), computer hardware,
firmware, software, and/or combinations thereof. These
various implementations may include implementation in one
or more computer programs that are executable and/or
interpretable on a programmable system including at least
one programmable processor, which may be special or
general purpose, coupled to receive data and instructions
from, and to transmit data and instructions to, a storage
system, at least one input device (e.g., mouse, touch screen,
etc.), and at least one output device.

These computer programs, which can also be referred to
as programs, software, software applications, applications,
components, or code, include machine instructions for a
programmable processor, and can be implemented in a
high-level procedural language, an object-oriented program-
ming language, a functional programming language, a logi-
cal programming language, and/or in assembly/machine
language. As used herein, the term “machine-readable
medium” (sometimes referred to as a computer program
product) refers to physically embodied apparatus and/or
device, such as for example magnetic discs, optical disks,
memory, and Programmable Logic Devices (PLDs), used to
provide machine instructions and/or data to a programmable
data processor, including a machine-readable medium that
receives machine instructions as a machine-readable signal.
The term “machine-readable signal” refers to any signal
used to provide machine instructions and/or data to a pro-
grammable data processor. The machine-readable medium
can store such machine instructions non-transitorily, such as
for example as would a non-transient solid state memory or
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a magnetic hard drive or any equivalent storage medium.
The machine-readable medium can alternatively or addition-
ally store such machine instructions in a transient manner,
such as for example as would a processor cache or other
random access memory associated with one or more physi-
cal processor cores.

To provide for interaction with a user, the subject matter
described herein can be implemented on a computer having
a display device, such as for example a cathode ray tube
(CRT) or a liquid crystal display (LCD) monitor for dis-
playing information to the user and a keyboard and a
pointing device, such as for example a mouse or a trackball,
by which the user may provide input to the computer. Other
kinds of devices can be used to provide for interaction with
a user as well. For example, feedback provided to the user
can be any form of sensory feedback, such as for example
visual feedback, auditory feedback, or tactile feedback; and
input from the user may be received in any form, including,
but not limited to, acoustic, speech, or tactile input. Other
possible input devices include, but are not limited to, touch
screens or other touch-sensitive devices such as single or
multi-point resistive or capacitive trackpads, voice recogni-
tion hardware and software, optical scanners, optical point-
ers, digital image capture devices and associated interpre-
tation software, and the like.

The subject matter described herein may be implemented
in a computing system that includes a back-end component
(e.g., as a data server), or that includes a middleware
component (e.g., an application server), or that includes a
front-end component (e.g., a client computer having a
graphical user interface or a Web browser through which a
user may interact with an implementation of the subject
matter described herein), or any combination of such back-
end, middleware, or front-end components. The components
of'the system may be interconnected by any form or medium
of digital data communication (e.g., a communication net-
work). Examples of communication networks include a
local area network (“LLAN”), a wide area network (“WAN”),
and the Internet.

The computing system may include clients and servers. A
client and server are generally remote from each other and
typically interact through a communication network. The
relationship of client and server arises by virtue of computer
programs running on the respective computers and having a
client-server relationship to each other.

The subject matter described herein can be embodied in
systems, apparatus, methods, and/or articles depending on
the desired configuration. The implementations set forth in
the foregoing description do not represent all implementa-
tions consistent with the subject matter described herein.
Instead, they are merely some examples consistent with
aspects related to the described subject matter. Although a
few variations have been described in detail above, other
modifications or additions are possible. In particular, further
features and/or variations can be provided in addition to
those set forth herein. For example, the implementations
described above can be directed to various combinations and
subcombinations of the disclosed features and/or combina-
tions and subcombinations of several further features dis-
closed above. In addition, the logic flow(s) depicted in the
accompanying figures and/or described herein do not nec-
essarily require the particular order shown, or sequential
order, to achieve desirable results. Other implementations
may be within the scope of the following claims.
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What is claimed is:

1. A method for implementation by one or more data
processors forming part of at least one computing system,
the method comprising:

receiving data characterizing a score model;

normalizing the score model by transforming it into a

directed acyclic graph comprising a plurality of nodes;

a first method comprising:

converting a node outgoing arc into a function call
expression, the node outgoing arc connecting the
plurality of nodes of the directed acyclic graph; and
converting a node condition into a Boolean expression;
a second method comprising:
recursively generating nested IF-ELSE conditions
inside of a single structured rules language function;
transforming the directed acyclic graph into a structured
rules language program, the transforming of the
directed acyclic graph into the structured rules lan-
guage program comprising at least one of the first
method and the second method;
transforming the structured rules language program into a
program using a concurrent, class-based, object-ori-
ented computer programming language; and executing
the program with the at least one computing system.

2. A method as in claim 1 further comprising:

displaying at least a portion of the concurrent, class-

based, object-oriented computer programming lan-
guage in a graphical user interface.

3. A method as in claim 1, wherein the concurrent,
class-based, object-oriented computer programming lan-
guage is selected from a group consisting of: JAVA pro-
gramming language, C programming language, and COBOL
programming language.

4. A method as in claim 1, wherein the normalizing
comprises:

mapping the score model to a root node of the directed

acyclic graph;

mapping characteristics of the score model to intermedi-

ate nodes of the directed acyclic graph;

wherein the score model comprises at least one score

value; and

mapping each of the at least one score value to a leaf node

of the directed acyclic graph.

5. A method as in claim 4, wherein the normalizing further
comprises:

sorting bins of a same characteristic and checking for gaps

and overlaps between bin ranges.

6. A method as in claim 5, further comprising:

transmitting or displaying data reporting overlaps

between bin ranges.

7. A method as in claim 4, wherein the normalizing further
comprises:

merging paths of the directed acyclic graph terminating

with equivalent leaf nodes.

8. A method as in claim 1, wherein transforming the
directed acyclic graph into the structured rules language
program comprises:

traversing the directed acyclic graph in a depth-first

direction and applying blocks of structured rules lan-
guage code generated with data from nodes, arcs and
leaves of the directed acyclic graph.

9. A method as in claim 8, wherein transforming the
directed acyclic graph into the structured rules language
program further comprises:

analyzing the directed acyclic graph to determine a struc-

tured rules language generation strategy; and
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parameterizing a structured rules language generation
synthesizer with the determined structured rules lan-
guage generation strategy.

10. A method as in claim 1, wherein transforming the
structure rules language program into the program using the
concurrent, class-based, object-oriented computer program-
ming language comprises:

translating structured rule language rulesets into methods

of the concurrent, class-based, object-oriented com-
puter programming language.

11. A non-transitory computer program product storing
instructions which, when executed by at least one data
processor forming part of at least one computing system,
result in operations:

receiving data characterizing a score model;

normalizing the score model by transforming it into a

directed acyclic graph comprising a plurality of nodes;

a first method comprising:

converting a node outgoing arc into a function call
expression, the node outgoing arc connecting the
plurality of nodes of the directed acyclic graph; and
converting a node condition into a Boolean expression;
a second method comprising:
recursively generating nested IF-ELSE conditions
inside of a single structured rules language function;
transforming the directed acyclic graph into a structured
rules language program, the transforming of the
directed acyclic graph into the structured rules lan-
guage program comprising at least one of the first
method and the second method;
transforming the structured rules language program into a
program using a concurrent, class-based, object-ori-
ented computer programming language; and

executing the program with the at least one computing
system.

12. A computer program product as in claim 11, wherein
the operations further comprise:

displaying at least a portion of the concurrent, class-

based, object-oriented computer programming lan-
guage in a graphical user interface.

13. A computer program product as in claim 11, wherein
the concurrent, class-based, object-oriented computer pro-
gramming language is selected from a group consisting of:
JAVA programming language, C programming language,
and COBOL programming language.

14. A computer program product as in claim 11, wherein
the normalizing comprises:

mapping the score model to a root node of the directed

acyclic graph;

mapping characteristics of the score model to intermedi-

ate nodes of the directed acyclic graph;

wherein the score model comprises at least one score

value; and

mapping each of the at least one score value to a leaf node

of the directed acyclic graph.

15. A computer program product as in claim 14, wherein
the normalizing further comprises:

sorting bins of a same characteristic and checking for gaps

and overlaps between bin ranges.

16. A computer program product as in claim 15, wherein
the operations further comprise:

transmitting or displaying data reporting overlaps

between bin ranges.

17. A computer program product as in claim 14, wherein
the normalizing further comprises:

merging paths of the directed acyclic graph terminating

with equivalent leaf nodes.
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18. A computer program product as in claim 11, wherein
transforming the directed acyclic graph into the structured
rules language program comprises:

traversing the directed acyclic graph in a depth-first

direction and applying blocks of structured rules lan-
guage code generated with data from nodes, arcs and
leaves of the directed acyclic graph.
19. A computer program product as in claim 18, wherein
transforming the directed acyclic graph into the structured
rules language program further comprises:
analyzing the directed acyclic graph to determine a struc-
tured rules language generation strategy; and

parameterizing a structured rules language generation
synthesizer with the determined structured rules lan-
guage generation strategy.

20. A computer program product as in claim 11, wherein
transforming the structure rules language program into the
program using the concurrent, class-based, object-oriented
computer programming language comprises:

translating structured rule language rulesets into methods

of the concurrent, class-based, object-oriented com-
puter programming language.

#* #* #* #* #*
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